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ABSTRACT 

Drug discovery can be through target identification, target verification, lead identification, and 

effectiveness of lead.  Artificial intelligence (AI) is a simulation of the process of human intelligence 

through computers. The process involves obtaining information, developing rules for using 

information, making possible or accurate conclusions, and self-correcting. The biopharmaceutical 

industry makes efforts to approach AI to improve drug discovery, reduce research and development 

costs, reduce the time and cost of early drug discovery and support predicting potential risks/side 

effects in late trials that can be very useful in avoiding traumatic events in clinical trials. In this review, 

we provide an overview of current AI technologies and offer a glimpse of how AI is reimagining drug 

discovery by highlighting examples where AI has made a real impact. Considering the excitement and 

hyperbole surrounding AI in drug discovery, we present a realistic view by discussing both 

opportunities and challenges in adopting AI in drug discovery.  The rapid growth in life sciences and 

machine learning algorithms has led to enormous statistical access to the growth of AI-based startups 

focused on drug innovation in recent years. 
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INTRODUCTION 

Drug discovery is a long, complex and high-risk process. It typically takes a staggering 10-15 years and 

costs up to US$2.8 billion to develop a new drug, while an astonishing proportion (80-90%) of them 

fail in the clinic with Phase II proof-of- concept (PoC) trials accounting for the most significant number 

of clinical failures 1. Although the number of new molecular  

entities (NMEs) approved by regulatory agencies, such as the US Food and Drug Administration 

(FDA), has increased over the past decade (2010-2020) compared with the prior decade, the cost of 

bringing a new drug to market has risen precipitously because of regulatory incentives and the advent 

of new modalities 2,3.The key drivers contributing to the increased cost of pharmaceutical innovation 

include investment lost from late-stage clinical attrition, an increasingly stringent regulatory system 
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that sets a high bar for approval, and higher clinical trial costs, especially for pivotal trials. Given these 

realities, pharmaceutical and biotech companies are incentivized to innovate and adopt new 

technologies to improve productivity, cut costs, and ensure sustainability. Over the past few years, 

there has been a drastic increase in data digitalization in the pharmaceutical sector. However, this 

digitalization comes with the challenge of acquiring, scrutinizing, and applying that knowledge to solve 

complex clinical problems 4. This motivates the use of AI, because it can handle large volumes of data 

with enhanced automation5. AI is a technology based system involving various advanced tools and 

networks that can mimic human intelligence. 

At the same time, it does not threaten to replace human physical presence6,7completely. 

AI utilizes systems and software that can interpret and learn from the input data to make independent 

decisions for accomplishing specific objectives. According to the McKinsey Global Institute, the rapid 

advances in AI-guided automation will be likely to completely change the work culture of society8, 9. 

AI involves several method domains, such as reasoning, knowledge representation, solution search, 

and, among them, a fundamental paradigm of machine learning (ML). ML uses algorithms that can 

recognize patterns within a set of data that has been further classified. A subfield of the ML is deep 

learning (DL), which engages artificial neural networks (ANNs). These comprise a set of 

interconnected sophisticated computing elements involving perceptons analogous to human biological 

neurons, mimicking the transmission of electrical impulses in the human brain10. ANNs constitute a set 

of nodes, each receiving a separate input, ultimately converting them to output, singly or multilinked 

using algorithms to solve problems11. ANNs involve various types, including multilayer perceptron 

(MLP) networks, recurrent neural networks (RNNs), and convolutional neural networks (CNNs), which 

utilize either supervised or unsupervised training procedures12, 13. The MLP network has applications 

including pattern recognition, optimization aids, process identification, and controls, are usually trained 

by supervised training procedures operating in a single direction only, and can be used as universal 

pattern classifiers14. RNNs are networks with a closed-loop, having the capability to memorize and 

store information, such as Boltzmann constants and Hopfield networks15,16. CNNs are a series of 

dynamic systems with local connections, characterized by its topology, and have use in image and 

video processing, biological system modeling, processing complex brain functions, pattern recognition, 

and sophisticated signal processing17. The more complex forms include Kohonen networks, RBF 

networks, LVQ networks, counter-propagation networks, and ADALINE networks. Several tools have 

been developed based on the networks that form the core architecture of AI systems. One such tool 

developed using AI technology is the International Business Machine (IBM) Watson supercomputer 

(IBM, New York, USA). It was designed to assist in the analysis of a patient’s medical information and 
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its correlation with a vast database, resulting in suggesting treatment strategies for cancer. This system 

can also be used for the rapid detection of diseases. This was demonstrated by its ability to detect breast 

cancer in only 60 s18,19. The AI technologies used today in drug discovery have evolved from earlier 

machine learning (ML) and cheminformatics concepts. For example, the application of ML to the 

development of quantitative structure activity relationship (QSAR) models and expert systems for 

toxicity prediction has a longstanding history20,21. The widespread adoption of these techniques 

witnessed in recent times has been fueled by the advent of big data, advanced analytics, GPU-

accelerated computing, cloud processing, algorithm development, and the democratization of AI 

toolkits. There are opportunities to apply AI technologies across the drug discovery and development 

continuum, starting from target identification through to preclinical development. Evidence suggests 

that lack of clinical efficacy has been the foremost cause of attrition in clinical Phase II studies22, 

highlighting that target selection remains one of the most crucial decision points in drug discovery. 

Given this reality, there is a desire to improve the target selection process by applying AI techniques. 

AI-driven discovery platforms can extract and synthesize target-relevant information from a large 

volume of complex, disparate multiomics data, providing a better understanding of target biology, 

uncovering disease target associations, and identifying targets   with a strong link to a disease. Target 

DB is one such example that   integrates publicly available data on a given target and uses an ML-

based classification system to categorize target tractability23. The approach and scoring system used 

within Target DB provides useful criteria for ligand ability assessment and prioritization of   drug 

targets for development. Once a target of interest has been identified and validated, the next stage in 

drug discovery is to identify high-quality chemical start points (hits) that bind to, and modulate, the 

target.   Although there is a range of hit-finding methods available, virtual screening (VS) is a cost-

effective and resource-sparing approach used to prioritize a subset of compounds for evaluation in a 

primary assay. The use of AI-driven approaches to improve the performance of VS is increasing24. AI-

powered VS campaigns have identified novel chemical hits against seemingly difficult drug targets 25, 

26,  thereby turning undruggable targets into tractable drug targets.  To ensure that quality hits worthy 

of further consideration are progressed, computational methods have been used to identify, prioritize 

and select hit compounds, a process referred to as hit triage.15 ML models are now being used to 

automate and improve the efficiency of the hit triage process27.  Fast, accurate, and reliable prediction 

of binding free energies to enable VS and structure-based design remains a significant challenge, 

including rank-ordering of compounds from a VS. In recent years, ML-based scoring functions trained 

on databases of protein ligand complexes have shown great promise in improving hit rates during VS28. 

Unlike traditional scoring functions, ML-based scoring functions can implicitly account for binding 
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interactions that are difficult to model, and are not constrained to any predefined functional form. With 

the advent of ‘make-on-demand’ libraries and the screening collections breaking the billion compound 

barriers, conventional docking methods have become impractical. Active learning methods integrated 

with molecular docking offer an elegant solution for efficient exploration of the chemical space through 

iterative screening29,30. The lead optimization (LO) phase is the most expensive and time-consuming 

phase in preclinical drug discovery31. It is inherently a multiparameter optimization (MPO) problem 32, 

with the goal of identifying compounds with an optimal balance of drug   like properties while 

maintaining sufficient potency. Hitting this sweet spot is a challenge, because it involves simultaneous 

optimization of multiple and often competing objectives, such as safety, specificity, efficacy and 

pharmacokinetics (PK) properties, while maintaining potency33. LO involves iterative rounds of the 

design–make-test-analyze (DMTA) cycle and shortening these cycle times is crucial for accelerating 

the LO process. Generative chemistry that relies on AI-guided generative modeling for compound 

design has demonstrated success in shortening cycle times and designing compounds that meet the 

defined LO criteria34. Generative modeling platforms also integrate various predictive models for 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) endpoints to guide the design 

and selection of compounds with favorable properties that satisfy the defined LO criteria. In this way, 

generative chemistry can automate and shorten the design phase of the DMTA cycle and offset 

individual cognitive biases during molecule ideation. AI is also making headway in computer-aided 

synthesis planning (CASP), which is valuable in both hit identification and improving DMTA cycle 

efficiency35. AI-assisted synthesis planning helps chemists to objectively choose the most efficient and 

cost-effective synthetic route for a target molecule, thus accelerating the make phase of the DMTA 

cycle. Automated continuous flow chemical synthesis is another emerging technology poised to 

revolutionize organic synthesis36. This technology opens new avenues by integrating smart automation 

and intelligent synthesis, thereby enabling fully autonomous synthesis. Closing the loop of the DMTA 

cycle is the ‘analysis’ phase. To improve DMTA cycle efficiency, the data must be turned into 

knowledge to make better design suggestions for the next iteration. Given the sparse and non-uniform 

nature of the data encountered in drug discovery, the incorporation of sparse data AI methods, such as 

few-shot learning, for data analysis allows extracting valuable insights to inform the next round of the 

design cycle. Another practical application of AI is using deep imputation methods to handle the noisy, 

sparse, missing, and truncated data often generated in drug discovery37-39. Deep imputation methods 

combine DL and statistical imputation methods to learn correlations between experimental endpoints 

and gain valuable information, even from minimal experimental data, to more accurately fill in missing 

experimental values40. Such techniques can help establish assay correlations and   build multi target 
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QSAR models, which can be used for in silico off-target profiling against protein target families, such 

as kinases. Translating preclinical discoveries into clinical practice in the form of new therapeutics is 

one of the biggest challenges in clinical development and, too often, clinical candidates are lost during 

translation. To bridge this translational gap, translational 1 strategies are increasingly being integrated 

as early as LO to improve Phase II and Phase III clinical success rates, more evident in oncology drug 

discovery programs41. To that end, the use of translational biomarkers that provide information on 

target modulation, target engagement, confirm proof of mechanism (POM), and for designing stratified 

clinical trials are used for derisking clinical development. The ability of AI techniques to learn hidden 

and meaningful patterns by integrating large amounts of heterogeneous and high-dimensional omics 

data sets provides valuable insights for translational biomarker discovery42.  As innovations in AI 

technologies continue, the use of AI in drug discovery will also continue to grow. 

AI in Drug Discovery 

The vast chemical space, comprising >1060 molecules, fosters the development of a large number of 

drug molecules. However, the lack of advanced technologies limits the drug development process, 

making it a time-consuming and expensive task, which can be addressed by using AI. AI can recognize 

hit and lead compounds, and provide a quicker validation of the drug target and optimization of the 

drug structure design43,44. Despite its advantages, AI faces some significant data challenges, such as the 

scale, growth, diversity, and uncertainty of the data. The data sets available for drug development in 

pharmaceutical companies can involve millions of compounds, and traditional ML tools might not be 

able to deal with these types of data. Quantitative structure-activity relationship (QSAR)-based 

computational model can quickly predict large numbers of compounds or simple physicochemical 

parameters, such as log P or log D. However, these models are some way from the predictions of 

complex biological properties, such as the efficacy and adverse effects of compounds. In addition, 

QSAR-based models also face problems such as small training sets, experimental data error in training 

sets, and lack of experimental validations. To overcome these challenges, recently developed AI 

approaches, such as DL and relevant modeling studies, can be implemented for safety and efficacy 

evaluations of drug molecules based on big data modeling and analysis. In 2012, Merck supported a 

QSAR ML challenge to observe the advantages of DL in the drug discovery process in the 

pharmaceutical industry. DL models showed significant predictivity compared with traditional ML 

approaches for 15 absorption, distribution, metabolism, excretion, and toxicity (ADMET) data sets of 

drug candidates 45,46.The virtual chemical space is enormous and suggests a geographical map of 

molecules by illustrating the distributions of molecules and their properties. The idea behind the 

illustration of chemical space is to collect positional information about molecules within the space to 
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search for bioactive compounds and, thus, virtual screening (VS) helps to select appropriate molecules 

for further testing. Several chemical spaces are open access, including Pub Chem, Chem Bank, Drug 

Bank, and Chem DB. Numerous in silico methods to virtual screen compounds from virtual chemical 

spaces along with structure and ligand-based approaches, provide a better profile analysis, faster 

elimination of non lead compounds and selection of drug molecules, with reduced expenditure. Drug 

design algorithms, such as coulomb matrices and molecular fingerprint recognition, consider the 

physical, chemical, and toxicological profiles to select a lead compound47. Various parameters, such as 

predictive models, the similarity of molecules, the molecule generation process, and the application of 

in silico approaches can be used to predict the desired chemical structure of a compound48. Pereira et 

al. presented a new system, Deep VS, for the docking of 40 receptors and 2950 ligands, which showed 

exceptional performance when 95 000 decoys were tested against these receptors49. Another approach 

applied a multiobjective automated replacement algorithm to optimize the potency profile of a cyclin-

dependent kinase-2 inhibitor by assessing its shape similarity, biochemical activity, and 

physicochemical properties50. QSAR modeling tools have been utilized for the identification of 

potential drug candidates and have evolved into AI-based QSAR approaches, such as linear 

discriminate analysis (LDA), support vector machines (SVMs), random forest (RF) and decision trees, 

which can be applied to speed up QSAR analysis51-53. King et al. found a negligible statistical 

difference when the ability of six AI algorithms to rank anonymous compounds in terms of biological 

activity was compared with that of traditional approaches54.  

AI in Drug Screening  

The process of discovering and developing a drug can take over a decade and costs US$2.8 billion on 

average. Even then, nine out of ten therapeutic molecules fail Phase II clinical trials and regulatory 

approval55,56. Algorithms, such as Nearest-Neighbour classifiers, RF, extreme learning machines, 

SVMs, and deep neural networks (DNNs), are used for VS based on synthesis feasibility and can also 

predict in vivo activity and toxicity57. Several biopharmaceutical companies, such as Bayer, Roche, and 

Pfizer, have teamed up with IT companies to develop a platform for the discovery of therapies in areas 

such as immuno oncology and cardiovascular diseases. The aspects of VS to which AI has been applied 

are discussed below.  

Prediction of the physicochemical properties 

Physicochemical properties, such as solubility, partition coefficient (logP), degree of ionization, and 

intrinsic permeability of the drug, indirectly affect its pharmacokinetics properties and its target 

receptor family and, hence, must be considered when designing a new drug58. Different AI-based tools 

can be used to predict physicochemical properties. For example, ML uses large data sets produced 
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during compound optimization done previously to train the program59. Algorithms for drug design 

include molecular descriptors, such as SMILES strings, potential energy measurements, electron 

density around the molecule, and coordinates of atoms in 3D, to generate feasible molecules via DNN 

and thereby predict its properties60. Zang et al. created a quantitative structure–property relationship 

(QSPR) workflow to determine the six physicochemical properties of environmental chemicals 

obtained from the Environmental Protection Agency (EPA) called the Estimation Program Interface 

(EPI) Suite. Neural networks based on the ADMET predictor and ALGOPS program have been used to 

predict the lipophilicity and solubility of various compounds61. DL methods, such as undirected graph 

recursive neural networks and graph-based convolutional neural networks (CVNN), have been used to 

predict the solubility of molecules62. In several instances, ANN-based models, graph kernels, and 

kernel ridge-based models were developed to predict the acid dissociation constant of compounds63. 

Similarly, cell lines, such as Madin-Darby canine kidney cells and human colon adenocarcinoma 

(Caco-2) cells have been utilized to generate cellular permeability data of a diverse class of molecules, 

which are subsequently fed to AI-assisted predictors. Kumar et al. developed six predictive models 

[SVMs, ANNs, knearestneighbor algorithms, LDAs, probabilistic neural network algorithms, and 

partial least square (PLS)] utilizing 745 compounds for training; these were used later on 497 

compounds to predict their intestinal absorptivity based on parameters including molecular surface 

area, molecular mass, total hydrogen count, molecular refractivity, molecular volume, logP, total polar 

surface area, the sum of E- states indices, solubility index (log S), and rotatable bonds64. On similar 

lines, RF and DNN-based in silico models were developed to determine human intestinal absorption of 

a variety of chemical compounds65. Thus, AI has a significant role in the development of a drug, to 

predict not only its desired physicochemical properties, but also the desired bioactivity.  

Prediction of bioactivity 

The efficacy of drug molecules depends on their affinity for the target protein or receptor. Drug 

molecules that do not show any interaction or affinity towards the targeted protein will not be able to 

deliver the therapeutic response. In some instances, it might also be possible that developed drug 

molecules interact with unintended proteins or receptors, leading to toxicity. Hence, drug target binding 

affinity (DTBA) is vital to predict drug–target interactions. AI-based methods can measure the binding 

affinity of a drug by considering either the features or similarities of the drug and its target. Feature-

based interactions recognize the chemical moieties of the drug and that of the target to determine the 

feature vectors. By contrast, in similarity-based interaction, the similarity between drug and target is 

considered, and it is assumed that similar drugs will interact with the same targets66 .Web applications, 

such as Chem Mapper and the similarity ensemble approach (SEA), are available for predicting drug–
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target interactions67. Many strategies involving ML and DL have been used to determine DTBA, such 

as Kron RLS, Sim Boost, Deep DTA, and PADME. ML-based approaches, such as Kronecker-

regularized least squares (Kron RLS), evaluate the similarity between drugs and protein molecules to 

determine DTBA. Similarly, Sim Boost utilized regression trees to predict DTBA, and considers both 

feature-based and similarity-based interactions. Drug features from SMILES, ligand maximum 

common substructure (LMCS), extended connectivity fingerprint, or a combination thereof can also be 

considered. DL approaches have shown improved performance compared with ML because they apply 

network-based methods that do not depend on the availability of the 3D protein structure. Deep DTA, 

PADME, Wide DTA, and Deep Affinity are some DL methods used to measure DTBA. Deep DTA 

accepts drug data in the form of SMILES, whereby, the amino acid sequence is entered for protein 

input data and for the 1D representation of the drug structure68 . Wide DTA is CVNN DL method that 

incorporates 

ligand SMILES (LS), amino acid sequences, LMCS, and protein domains and motifs as input data for 

assessing the binding affinity69. Deep Affinity and Protein and Drug Molecule interaction prediction 

(PADME) are similar to the approaches described earlier70. Deep Affinity is an interpretable DL model 

that uses both RNN and CNN and both unlabeled and labeled data. It takes into account the compound 

in the SMILES format and protein sequences in the structural and physicochemical properties71. 

PADME is a DL-based platform that utilizes feed-forward neural networks for predicting drug target 

interactions (DTIs). It considers the combination of the features of the drug and target protein as input 

data and forecasts the interaction strength between the two. For the drug and the target, the SMILES 

representation and the protein sequence composition (PSC) are used for illustration, respectively. 

Unsupervised ML techniques, such as MANTRA and PREDICT, can be used to forecast the 

therapeutic efficacy of drugs and target proteins of known and unknown pharmaceuticals, which can 

also be extrapolated to the application of drug repurposing and interpreting the molecular mechanism 

of the therapeutics. MANTRA groups compound based on similar gene expression profiles using a C 

Map data set and clusters those compounds predicted to have a common mechanism of action and 

common biological pathway. The bioactivity of a drug also includes ADME data. AI-based tools, such 

as Xeno Site, FAME, and SMART Cyp, are involved in determining the sites of metabolism of the 

drug. In addition, software such as Cyp Rules, Meta Site, Meta Pred, SMART Cyp, and Which Cyp 

were used to identify specific isoforms of CYP450 that mediate a particular drug metabolism. The 

clearance pathway of 141 approved drugs was done by SVM-based predictors with high accuracy72. 
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Prediction of toxicity 

The prediction of the toxicity of any drug molecule is vital to avoid toxic effects. Cell-based in vitro 

assays are often used as preliminary studies, followed by animal studies to identify the toxicity of a 

compound, increasing the expense of drug discovery. Several web-based tools, such as Lim Tox, 

pkCSM, admet SAR, and Tox tree, are available to help reduce the cost. Advanced AI-based 

approaches look for similarities among compounds or project the toxicity of the compound based on 

input features. The Tox21 Data Challenge organized by the National Institutes of Health, 

Environmental Protection Agency (EPA), and US Food 

and Drug Administration (FDA) was an initiative to evaluate several computational techniques to 

forecast the toxicity of 12 707 environmental compounds and drugs; an ML algorithm named DeepTox 

outperformed all methods by identifying static and dynamic features within the chemical descriptors of 

the molecules, such as molecular weight (MW) and Van der Waals volume, and could efficiently 

predict the toxicity of a molecule based on predefined 2500 toxicophore features73. The different AI 

tools used in drug discovery are listed in Table 1. SEA was used to evaluate the safety target prediction 

of 656 marketed drugs against 73 unintended targets that might produceadverse effects. Developed 

using an ML-based approach, eToxPred was applied to estimate the toxicity and synthesis feasibility of 

small organic molecules and showed accuracy as high as 72%. Similarly, open-source tools, such as 

TargeTox and PrOCTOR, are also used in toxicity prediction74. TargeTox is biological network target-

based drug toxicity risk prediction method that uses the guilt-by-association principle whereby entities 

that have similar functional properties share similarities in biological networks75. It can produce protein 

network data and unite pharmacological and functional properties in a ML classifier to predict drug 

toxicity76. PrOCTOR was trained using a RF model and took into account drug-likeliness properties, 

molecular features, target-based features, and properties of the protein targets to generate a ‘PrOCTOR 

score’, which forecasted whether a drug would fail in clinical trials owing to its toxicity. It also 

recognized FDA-approved drugs that later reported adverse drug events77. In another approach, 

Tox_(R)CNN involving a deep CVNN method evaluated the cytotoxicity of drugs that had been 

exposed to DAPI-stained cells 78.  

AI IN DESIGNING DRUG MOLECULES 

Prediction of the target protein structure 

While developing a drug molecule, it is essential to assign the correct target for successful treatment. 

Numerous proteins are involved in the development of the disease and, in some cases, they are 

overexpressed. Hence, for selective targeting of disease, it is vital to predict the structure of the target 

protein to design the drug molecule. AI can assist in structure-based drug discovery by predicting the 
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3D protein structure because the design is in accordance with the chemical environment of the target 

protein site, thus helping to predict the effect of a compound on the target along with safety 

considerations before their synthesis or production79. The AI tool, AlphaFold, which is based on DNNs, 

was used to analyze the distance between the adjacent amino acids and the corresponding angles of the 

peptide bonds to predict the 3Dtarget protein structure and demonstrated excellent results by correctly 

predicting 25 out of 43 structures. In a study by AlQurashi, RNN was used to predict the protein 

structure. The author considered three stages (i.e., computation, geometry, and assessment) termed a 

recurrent geometric network (RGN). Here, the primary protein sequence was encoded, and the torsional 

angles for a given residue and a partially completed backbone obtained from the geometric unit 

upstream of this were then considered as input and provided a new backbone as output. The final unit 

produced the 3D structure as the output. Assessment of the deviation of predicted and experimental 

structures was done using the distance-based root mean square deviation (dRMSD) metric. The 

parameters in RGN were optimized to keep the dRMSD low between the experimental and predicted 

structures 80. AlQurashi predicted that his AI method would be quicker than AlphaFold in terms of the 

time taken to predict the protein structure. However, AlphaFold is likely to have better accuracy in 

predicting protein structures with sequences similar to the reference structures81. A study was 

conducted to predict the 2D structure of a protein using MATLAB assisted by a nonlinear three-layered 

NN toolbox based on a feed-forward supervised learning and back propagation error algorithm. 

MATLAB was used to train input and output data sets, and the NNs were learning algorithms and 

performance evaluators. The accuracy in predicting the 2D structure was 62.72%82. 

Predicting drug-protein interactions 

Drug–protein interactions have a vital role in the success of a therapy. The prediction of the interaction 

of a drug with a receptor or protein is essential to understand its efficacy and effectiveness, allows the 

repurposing of drugs, and prevents polypharmacology. Various AI methods have been useful in the 

accurate prediction of ligand–protein interactions, ensuring better therapeutic efficacy83. Wang et al. 

reported a model using the SVM approach, trained on 15 000 protein-ligand interactions, which were 

developed based on primary protein sequences and structural characteristics of small molecules to 

discover nine new compounds and their interaction with four crucial targets84. Yu et al. exploited two 

RF models to predict possible drug– protein interactions by the integration of pharmacological and 

chemical data and validating them against known platforms, such as SVM, with high sensitivity and 

specificity. Also, these modes were capable of predicting drug-target associations that could be further 

extended to target-disease and target-target associations, thereby speeding up the drug discovery 

process85. Xiao et al. adopted the Synthetic Minority Over-Sampling Technique and the Neighborhood 
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Cleaning Rule to obtain optimized data for the subsequent development of iDrugTarget. This is a 

combination of 

four subpredictors (iDrug-GPCR, iDrug-Chl, iDrug-Enz, and iDrug- NR) for identifying interactions 

between a drug and G-protein coupled receptors (GPCRs), ion channels, enzymes, and nuclear 

receptors (NR) respectively. When this predictor was compared with existing predictors through target-

jackknife tests, the former surpassed the latter in terms of both prediction accuracy and consistency86. 

The ability of AI to predict drug–target interactions was also used to assist the repurposing of existing 

drugs and avoiding polypharmacology. Repurposing an existing drug qualifies it directly for Phase II 

clinical trials. This also reduces expenditure because relaunching an existing drug costs US$8.4 million 

compared with the launch of a new drug entity (US$41.3 million) 87. The ‘Guilt by association’ 

approach can be utilized to forecast the innovative association of a drug and disease, which is either a 

knowledge-based or computationally driven network88. In a computationally driven network, the ML 

approach is widely used, which utilizes techniques such as SVM, NN, logistic regression, and DL. 

Logistic regression platforms, such as PREDICT, SPACE, and other ML approaches, consider drug–

drug, disease-disease similarity, the similarity between target molecules, chemical structure, and gene 

expression profiles while repurposing a drug89. Cellular network-based deep learning technology 

(deepDTnet) has been explored to predict the therapeutic use of topotecan, currently used as a 

topoisomerase inhibitor. It can also be used for the therapy of multiple sclerosis by inhibiting human 

retinoic acid receptor-related orphan receptor-gamma t (ROR-gt) 90. This platform is currently under a 

provisional US patent. Self-organizing maps (SOMs) are in the unsupervised category of ML and are 

used in drug repurposing. They use a ligand-based approach to search novel off-targets for a set of drug 

molecules by training the system on a defined number of compounds with recognized biological 

activities, which is later used for the analysis of different compounds91. In a recent study, DNN was 

used to repurpose existing drugs with proven activity against SARS-CoV, HIV, influenza virus, and 

drugs that are 3C-like protease inhibitors. In this, extended connectivity fingerprint (ECFP), functional-

class fingerprints (FCFPs), and an octanol-water partition coefficient were considered to train the AI 

platform. From the results, it was concluded that 13 of the screened drugs could be carried toward 

further development based on their cytotoxicity and viral inhibition92. Drug–protein interactions can 

also predict the chances of polypharmacology, which is the tendency of a drug molecule to interact 

with multiple receptors producing off-target adverse effects93. AI can design a new molecule based on 

the rationale of polypharmacology and aid in the generation of safer drug molecules94. AI platforms 

such as SOM, along with the vast databases available, can be used to link several compounds to 

numerous targets and off-targets. Bayesian classifiers and SEA algorithms can be used to establish 
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links between the pharmacological profiles of drugs and their possible targets95. Li et al. demonstrated 

the use of KinomeX, an AI-based online medium using DNNs for the detection of polypharmacology 

of kinases based on their chemical structures. This platform uses DNN trained with 14 000 bioactivity 

data points developed based on >300 kinases. Thus, it has practical application in studying the overall 

selectivity of a drug towards the kinase family and particular subfamilies of kinases, thus helping to 

design novel chemical modifiers. This study used NVP-BHG712 as a model compound to predict its 

primary targets and also its off-targets with reasonable accuracy96. One prominent instance is Cyclica’s 

cloud-based proteome-screening AI platform, Ligand Express, which is used to find receptors that can 

interact with a particular small molecule (the molecular description of which is in SMILE string) and 

produce on and off-target interactions. This helps in understanding the possible adverse effects of the 

drug97. AI in de novo drug design over the past few years, the de novo drug design approach has been 

widely used to design drug molecules. The traditional method of de novo drug design is being replaced 

by evolving DL methods, the former having shortcomings of complicated synthesis routes and difficult 

prediction of the bioactivity of the novel molecule . Computer-aided synthesis planning can also 

suggest millions of structures that can be synthesized and also predicts several different synthesis 

routes for them98. Grzybowski et al. developed the Chematica program99, now renamed Synthia, which 

has the ability to encode a set of rules into the machine and propose possible synthesizing routes for 

eight medicinally essential targets. This program has proven to be efficient both in terms of improving 

the yield and reducing expenses. It is also capable of providing alternate synthesizing strategies for 

patented products and is said to be helpful in the synthesis of 

compounds that have not yet been synthesized. Similarly, DNN focuses on rules of organic chemistry 

and retrosynthesis, which, with the aid of Monte-Carlo tree searches and symbolic AI, help in reaction 

prediction and the process of drug discovery and design, which is much faster than traditional 

methods100,101. Coley et al. developed a framework in which a rigid forward reaction template was 

applied to a group of reactants to synthesize chemically feasible products with a significant rate of 

reaction. ML was used to determine the dominant product based on a score given by the NNs. Putin et 

al. explored a DNN architecture called the reinforced adversarial neural computer (RANC) based on 

RL for de novo design of small organic molecules. This platform was trained with molecules 

represented as SMILES strings. It then generated molecules with predefined chemical descriptors in 

terms of MW, logP, and topological polar surface area (TPSA). RANC was compared with another 

platform, ORGANIC, where the former outperformed in generating unique structures without sufficient 

loss of their structure length102. Even RNN was based on the long short-term memory (LSTM) relating 

to molecules obtained from the ChEMBL database and fed as SMILES strings. This was used to 
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generate a diverse library of molecules for VS. This approach was extended to procure novel molecules 

toward a particular target, such as targets for the 5- HT2A receptor, Staphylococcus aureus, and 

Plasmodium falciparum103. Popova et al. developed the Reinforcement Learning for Structural 

Evolution strategy for de novo drug synthesis, which involves generative and predictive DNNs to 

develop new compounds. In this, the generative model produces more unique molecules in terms of 

SMILE strings based on a stack memory, whereas the predictive models are used to forecast the 

properties of the developed compound104. Merk et al. also exploited the generative AI model to design 

retinoid X and PPAR agonist molecules, with desired therapeutic effects without requiring complex 

rules. The authors successfully designed five molecules, four out of which have shown good 

modulatory activity in cell assays, thereby emphasizing the use of generative AI in new molecule 

synthesis105. The involvement of AI in the de novo design of molecules can be beneficial to the 

pharmaceutical sector because of its various advantages, such as providing online learning and 

simultaneous optimization of the already-learned data as well as suggesting possible synthesis routes 

for compounds leading to swift lead design and development106. 

Predicting the Mode of Action of Compounds Using AI 

The major approach of the AI platform is to predict the on-and-off effects of the target and the in vivo 

safety profile of the compounds before they are developed extends to those involved in the drug 

development process - especially those working in medicinal chemistry. This platform is intended to 

reduce drug development time, R&D costs and attractiveness rates107. 

AI in Population Selection for Clinical Trials  

An appropriate AI tool to aid in clinical trials should identify the disease in patients, identify genetic 

targets and evaluate the impact of the designed molecule as well as on and off-target effects108. The 

development of AI methods for detecting and predicting disease-related biomarkers in humans allows 

the recruitment of a specific population of patients in Phase II and III clinical trials. AI predictive 

modelling is successful in clinical trials in selected patient populations109. 

AI in Polypharmacology 

Currently, there is a deep understanding of the pathological processes in diseases at the molecular level 

thus the “one-disease-multi-target model” dominates the “one-disease-one-target model”. This one 

disease multi-targeting is called poly-pharmacology and hence this AI works well toward 

polypharmacology to better understand the desired target of diseases resulting in best results110. 

CONCLUSION AND FUTURE PROSPECTS 

The advancement of AI, along with its remarkable tools, continuously aims to reduce challenges faced 

by pharmaceutical companies, impacting the drug development process along with the overall lifecycle 
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of the product, which could explain the increase in the number of start-ups in this sector. The current 

healthcare sector is facing several complex challenges, such as the increased cost of drugs and 

therapies, and society needs specific significant changes in this area. With the inclusion of AI in the 

manufacturing of pharmaceutical products, personalized medications with the desired dose, release 

parameters, and other required aspects can be manufactured according to individual patient need. Using 

the latest AI-based technologies will not only speed up the time needed for the products to come to the 

market, but will also improve the quality of products and the overall safety of the production process, 

and provide better utilization of available resources along with being cost-effective, thereby increasing 

the importance of automation. The most significant worry regarding the incorporation of these 

technologies is the job losses that would follow and the strict regulations needed for the 

implementation of AI. However, these systems are intended only to make work easier and not to 

completely replace humans 111-113. AI can not only aid quick and hassle-free hit compound 

identification, but also contribute 

to suggestions of synthesis routes of these molecules along with the prediction of the desired chemical 

structure and an understanding of drug–target interactions and its SAR. AI can also make major 

contributions to the further incorporation of the developed drug in its correct dosage form as well as its 

optimization, in addition to aiding quick decision-making, leading 

to faster manufacturing of better-quality products along with assurance of batch-to-batch consistency. 

AI can also contribute to establishing the safety and efficacy of the product in clinical trials, as well as 

ensuring proper positioning and costing in the market through comprehensive market analysis and 

prediction. Although there are no drugs currently on the market developed withAI-based approaches 

and specific challenges remain with regards to the implementation of this technology, it is likely that 

AI will become an invaluable tool in the pharmaceutical industry in the near future. 

Table 1 Examples of AI tools used in drug discovery 

Tools Details Website URL 

DeepChem MLP model that uses a 

python-based AI system to 

find a suitable candidate in 

drug discovery 

https://github.com/deepchem/deepchem 

DeepTox Software that predicts the 

toxicity of total of 12 000 

drugs 

www.bioinf.jku.at/research/DeepTox 

DeepNeural

NetQSAR 

Python-based system driven 

by computational tools that 

aid detection of the molecular 

activity of compounds 

 

https://github.com/Merck/DeepNeuralNet

-QSAR 

ORGANIC A molecular generation tool https://github.com/aspuru-guzik-
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 that helps to create molecules 

with desired properties 

group/ORGANIC 

PotentialNet Uses NNs to predict binding 

affinity of ligands 

https://pubs.acs.org/doi/full/10.1021/acsc

entsci.8b00507 

Hit Dexter 

 

ML technique to predict 

molecules that might respond 

to 

biochemical assays 

http://hitdexter2.zbh.uni-hamburg.de 

DeltaVina 

 

A scoring function for 

rescoring drug–ligand 

binding 

affinity 

 

https://github.com/chengwang88/deltavin

a 

Neural graph 

fingerprint 

Helps to predict properties of 

novel molecules 

https://github.com/HIPS/neural-

fingerprint 

AlphaFold Predicts 3D structures of 

proteins 

https://deepmind.com/blog/alphafold 

Chemputer 

 

Helps to report procedure for 

chemical synthesis in 

standardized format 

https://zenodo.org/record/1481731 
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