

Asian Journal of Pharmaceutical Education and Research

Vol -5, Issue-4, October-December 2016

SJIF Impact Factor 4.101

ISSN: 2278-7496

REVIEW ARTICLE

A REVIEW ON BUTEA MONOSPERMA: A PHARMACOLOGICALLY POTENT PLANT

Deepika Jain*, Abhilasha Jain, Dr. Savita Shrivastava

Dept. of Chemistry, Govt. M. L. B. Girls College, Bhopal (M.P.)

Article Received on 11/09/2016

Revised on 15/09/2016

Accepted on 22/09/2016

*Correspondence for Author

Deepika Jain

Dept. of

Chemistry, Govt. M.L.B.

Girls College, Bhopal, (M.P.)

Email: deepikaj034@gmail.com

ABSTRACT:

Butea monosperma (Lam.) Taub belong to family fabaceae. There are various species of Butea monosperma available over the world. Plant is highly used by the rural and tribal people in curing various disorders. It finds use both medicinally and commercially with each part of the plant having utility. It has been used for the treatment of different ailments such as cancer, diabetes, diarrhoea, dysentery, fever and jaundice. The leaves 3 foliate, large and instruct. Number of constituents belonging to imides, lactones, flavonoids, sterols, and alkaloids has been reported from various species of Butea. Butea monosperma is considered as a good source for products such as fodder, fuel, fiber, timber, gum or resin, dyestuff and traditionally in number of ailments. Pharmacologically Butea *monosperma* has been reported for various activities such as anthelmintic, anticonceptive, anticonvulsive, antidiabetic, antidiarrhoeal, antiestrogenic and antifertility, antiinflammatory, antimicrobial, antifungal, antibacterial, antistress, chemopreventive, haemaggultinating, hepatoprotective, radical scavenging, thyroid inhibitory, antiperoxidative and hypoglycemic effects and wound healing activities. The present review discuss the, phytochemical constituents, medicinal use, chemical constituents and traditional uses of each parts of plant as well products of plant and pharmacological activities of each part of plant.

Keywords: Butea monosperma, fabaceae, Pharmacological activities.

INTRODUCTION:

Butea monosperma is commonly known as Flame of forest, belonging to the family Fabaceae. It is locally called as palas, palash, mutthuga, bijasneha, dhak, khakara, chichra, Bastard Teak, Bengal Kino, Nourouc and is common throughout India and Burma. The pods should be collected and shown before the commencement of rains, root suckers are freely produced and help in vegetative propagation The genus Butea includes Butea monosperma parviflora, Butea minor and Butea superba widely distributed throughout India. The flowers are widely used in treatment of hepatic disorders, viral hepatitis, diarrhea, depurative and tonic. The flowers are also good source of flavonoids. The contents of flowers are Butein, Butrin, Isobutrin, Plastron, coreipsin, and Isocoreipsin.¹ Butea monosperma (Lam) is a medicinal plant growing in Burma, India and Sri Lanka; the flowers are tonic, astringent, aprodiasic and diuretic. The decoction of the bark is traditionally used in cold, cough, fever, various forms of haemorrhages, in menstrual disorders and in the preparation of tonics and elixirs. The stem bark is reported to possess antitumor, antiulcer, antifungal and antidiarrhoeal activities.^{2,3} It is also reported that the powder of the stem bark is used to apply on injury caused due to an axe, the juice of the stem is applied on goiter of human beings and the paste of the stem bark is applied in case of body swellings.⁴ The roots are reported in the treatment of filariasis, night blindness, helmenthiasis, piles, ulcers, and tumors.⁵

Butea monosperma plant AJPER October – December 2016, Vol 5, Issue 4 (9-28)

Classification of Butea Monosperma

Kingdom - Plantae

Sub-kingdom - Tracheobionta

Super-division - Spermatophyta

Division - Magnoliophyta

Class - Magnoliopsida

Subclass - Rosidae

Order - Fabales

Family - Fabaceae

Genus - Butea

Species- B. monosperma

Sanskrit - Palasa

- Hindi Dhak, Palas
- English Bastard Teak
- Bengali Mal & Mar
- Gujarati Khakharo
- Marathi Kakracha
- Telugu Mooduga, Palasamu

Tamil - Parasa

Kannada - Muttuga

Malyalam - Brahmavriksham, Kimshuka

Punjabi - Chichra, dhak, palas

TRADITIONAL USES

Flower of *B. monosperma* is traditionally used as anticonvulsant, antioxidant, antistress, memory and behaviour stimulant, antigout, diuretic, antileprotic, antiinflammatory, antiulcer, astringent and anti hepatotoxic. Flower is also used to treat enlarged spleen, menstrual disturbances, burning sensation and eye diseases. Leaf of *B. monosperma* is traditionally used as anti inflammatory, antitumor, diuretic, anti diabetic, antimicrobial,

anthelmintic, appetizer, carminative, astringent and aphrodisiac.⁶ These are also used to treat stomach disorders, diabetic sore throat, irregular bleeding during menstruation, flatulent colic, cough and cold. Stem bark is traditionally used as aphrodisiac, anti dysentery, antiulcer, antitumor, antimicrobial, antifungal, antipyretic, blood purifier and anti-asthmatic. It is also used in bleeding hemorrhoid disorder, dysmenorrheal, hydrocele, liver disorders, gonorrhoea, wound, worm infections, scorpion sting, cough and cold.^{7,8}

Root is used in night blindness, elephantiasis, and impotency and in snake bite. It also causes temporary sterility in women and is applied in sprue, piles, ulcers, tumors and dropsy. Seed of *B. monosperma* is used in inflammation, skin and eye diseases, bleeding piles, urinary stones, abdominal troubles, intestinal worms and tumour. When seeds are pounded with lemon juice and applied to the skin, they act as a rubefacient. Gum is used in stomatitis, corneal apacititis, ring worm, leucorrhoea, septic sore throat, excessive perspiration and diarrhea.

MEDICINAL USES

✓ Flowers

Gawale *et al.*, reported effect of flowers in memory and behavior mediated via monoamine neurotransmitters. The acetone soluble part of petroleum ether and ethanolic extract exhibited nootropic activity in the elevated plus maze paradigm and active avoidance learning.⁹ Shah *et al.*,¹⁰ reported that flowers have phytochemical studies and antiestrogenic activity. Alcoholic extract exhibited significant antiestrogenic activity, while ethyl acetate extract containing butrin and isobutrin exhibited poor activity. Significant inhibition of uterus weight gain, vaginal epithelium cornification and characteristic histological changes have been observed.

Flowers of Butea monosperma

✓ Seed

Bavarva *et al.*, evaluated the antihyperglycemic and antihyperlipidemic effects of *B*. *monosperma* in NIDDM rats.¹¹

Seed of Butea monosperma

✓ Leaves

Mengi et al., reported the anti-inflammatory activity of B. frondosa leaves.

Leaves of Butea monosperma

✓ Roots

Bodakhe et al., reported in vitro lens protective and antimicrobial activity of roots.

Roots of Butea monosperma

✓ Stems

Suguna *et al.*, investigated the effect of alcoholic bark extract on cutaneous wound healing in rats.¹⁴ Agarwal *et al.*,¹⁵ reported use of "Ayurvedic Rasayana" (herbal medicine) containing *B. monosperma* in the management of giardiasis perhaps by immunomodulation as the "Rasasyana' did not exhibit killing effect on the parasite *in vitro*.¹⁵

Pharmacological Activities of Butea monosperma

> Antifungal activity, Antimicrobial activity and Antibacterial activity

The stem bark of *Butea monosperma* displays antifungal activity which is due to the presence of an active constituent (-)-medicarpin (Bandara et al.).The seed oil of *Butea monosperma* shows significant bactericidal and fungicidal effect in in-vitro testing.¹⁶

> Anti-inflammatory activity

The leaves of *Butea monosperma* exhibit optical anti-inflammatory activity in rabbits.¹²

Anticonvulsive activity

It shows anticonvulsive activity due to the presence of a triterpene.¹⁷ The ethanolic extracts of leaves of *Albizzia lebbeck* and flowers of *Hibiscus rosa sinensis* and the petroleum ether extract of flowers of *Butea monosperma* exhibited anticonvulsant activity. The acetone soluble part of petroleum ether extract of *Butea monosperma* flowers showed anticonvulsant activity.

> Anti-esterogenic and anti-fertility activity

Antifertility effect of seed extract of *Butea frondosa* has also been reported in mice.¹⁸ The stem bark of *Butea monosperma* led to the isolation and identification of three new compounds named buteaspermin A, buteaspermin B and Butea spermanol along with 19 known compounds.¹⁹

> Anti-diabetic activity

The single dose treatment of ethanolic extract of *Butea monosperma* flowers at the dose of 200mg/kg P.O significantly improved glucose tolerance and cause reduction in blood glucose level in alloxan induced diabetic rats.²⁰ Oral adminstration of the ethanolic extract of the *Butea monosperma* seeds at the dose of 300mg/kg b.w.,exhibited significant antidiabetic,hypolipaemic and antiperoxidative effects in non-insulin dependent diabetes mellitus rats.

Anti-diarrhoel activity

Butea monosperma gum has also been found useful in cases of chronic diarrhoea.It is a powerful astringent and also decrease bilirubin level.²¹ The ethanolic extract of stem bark of *Butea monosperma* at 400 mg/kg and 800 mg/kg inhibited castor oil induced diarrhoea due to inhibiting gastro-intestinal motility and PGE2 induced enteropooling.It is used as nonspecific anti diarrhoel agent in folk medicine.²²

Chemical Constituents

Flower – Triterpene²³ several flavonoids butein, butin, isobutrin, coreopsin, isocoreopsin (butin 7-glucoside), sulphurein, monospermoside(butein 3-e-D-glucoside) and isomonospermoside, chalcones, aurones, isobutyine, , palasitrin, 3',4',7-trihydroxyflavone.²⁴

Gum -Tannins, mucilaginous material, pyrocatechin.²⁵

Seed - Oil (yellow, tasteless), proteolytic and lypolytic enzymes, plant proteinase and polypeptidase.(Similar to yeast tripsin). A nitrogenous acidic compound, along with palasonin is present in seeds. It also contains monospermoside (butein3-e-D-glucoside) and somonospermoside.²⁵

Root- The root of *Butea monosperma* contains glucose, glycine, a glycoside (aglycon) and an aromatic hydroxy compound.²⁶

Stem- 3-Z-hydroxyeuph-25-ene and 2, 14-dihydroxy-11,12-dimethyl-8-oxo-octadec-11enylcyclohexane²⁷ Stigmasterol-e-D-glucopyranoside and nonacosanoic acid (35) Flavonoid 8-C-prenylquercetin 7,4'-di- O-methyl-3-O- α -L-rhamnopyranosyl(1-4)- α -L-rhamnopyranoside.²⁸

Bark - Kino-tannic acid, Gallic acid, pyrocatechin.²⁹ Two compounds, 3, 9dimethoxypterocarpan, and triterpenoid ester, 3α - hydroxyeuph-25-enyl heptacosanoate.³⁰

Leaves - Glycoside, Kino-oil containing oleic, linoleic acid,palmitic and lignoceric acid.³¹

Resin - Jalaric esters I, II and laccijalaric esters III, IV. Z-amyrin, e-sitosterone and its glucoside, sucrose, lactone-nheneicosanoic acid-lactone.³²

Sap - Chalcones, butein, butin, colourless isomeric flavanone and its glucosides, butrin.²⁵

S. No.	Торіс	Author	Year	Work done
1	Anti-inflammatory and	Carey M.	2007	observed that methanolic extract
	Analgesic Activity Of Butea	William,		of B. monosperma was obtained
	Monosperma (Lam)	Krishna Mohan.		from Dry stem bark of <i>B</i> .
	Stem Bark In Experimental	G ³³		monosperma. Its anti-inflammatory
	Animals.			and analgesic activity is
				investigated using Carrageenon -
				induced paw edema, Hot plate test
				and Acetic acid induced writhing
				model. Methanolic extract of B.
				monosperma showed both anti-
				inflammatory and analgesic
				activity in dose dependant (200
				and 400mg/kg,p.o.) manner which
				are comparable to the standard
				drug (Diclofenac sodium for
				Carrageenon induced paw edema
				and Acetic acid induced writhing
				and Pentozocine for hot plate test
				model). Phytochemical studies of
				this plant reveal the presence of
				flavonoids, steroids, tannins,
				alkoloids, glycosides and these
				might be responsible for the anti-
				inflammatory and analgesic
				activity of this plant.
2	Anti ulcer and Anti-Secretary	Prakash patil, T.	2008	Worked on mechanisms of
	Properties of the Butea	prakash H.		pharmacological actions of the
	monosperma (Lam) Bark	shivakumar and		extract, in vitro anti-oxidant
	Extract with Relation to	siddhartha pal ³⁴		activity of methanolic extract of
	antioxidant Studies			the bark <i>B. monosperma</i> was
				investigated for scavenging lipid

Reported activity of Butea monosperma (L.) Bark

			peroxidation and reducing
			superoxide anion radicals and
			hydroxyl radical. A significant
			relation existed between
			concentration of the extract and
			percentage of free radicals
			scavenging effects. The extract
			inhibited 72.47, 75.86, 68.11 and
			77.46% lipid peroxidation and
			reduced power, superoxide anion
			and hydroxyl radical scavenging
			activity at a 50 μ g/ml concentration
			respectively. The anti-oxidant
			property may be related to the
			Flavonoids and polyphenol present
			in the extract.
3	Anti inflammatory activity of	A.Muralidhar, 2010	worked on acute inflammatory
	flavonoid fraction	K.Sudhakar	models like- carrageenan induced
	isolated from the stem bark of	Babu, T.Ravi	paw oedema and chronic model
	butea monosperma	sankar,	like- cotton- pellet induced
	(lam): a mechanism based	P.Reddanna,	granuloma. The flavonoids fraction
	study	G.V.Reddy,	significantly reduced the
		J.Latha ³⁵	inflammation in the carrageen an
			induced rat paw oedema
			and cotton- pellet induced

granuloma in rats the flavonoids fraction did not inhibit the gastric acid secretion suggesting that its anti ulcerogenic effect can be attributed to its action on the mucosa defense factors. The phytochemical investigations revealed that the flavonoids

				fraction contains two isoflavones
				genistein and prunetine. Hence the
				anti inflammatory activity of the
				flavonoids fraction may be due to
				these isoflavones.
4	Hepatoprotective potentials of	Prashant Ti	iwari, 201	I The studies indicated that stem
	Butea monosperma stem	Kuldeep Ku	lumar,	bark extract of <i>B. monosperma</i> is a
	bark extract against carbon	Rajnikant P	Panik,	potential source of natural
	tetrachloride induced	Alok Par	undey,	hepatoprotective. The
	hepatotoxicity in albino rats	Ashish Pa	andey	hepatoprotective property may be
		and		attributed to the antioxidant
		Pratap K	Kumar	potential and the phytochemical
		Sahu. ³⁶		constituents of the plant. The
				present study justifies the claim of
				the native practitioner that the
				decoction of the plant is useful in
				treating jaundice and find out the
				clinical efficacy of the B.
				monosperma.
5	Phytopharmacological and	P. Pal and	nd S. 201	worked on phytochemical and
	Phytochemical Review of	Bose ³⁷		Pharmacological behavior of plant
	Butea monosperma			(Butea monosperma). As per
				phytochemical investigation, the
				ethanolic extract was fractionated
				by various organic solvents.
				Repeated column chromatography
				of Chloroform fraction afforded
				nine compounds and the active n-
				butanol fraction afforded fourteen
				compounds and aqueous fraction
				afforded a single compound, which
				have been characterized by spectral
				study. As per pharmacological

. •

.

0

				investigation, antistress &
				anthelmintic activity, anti-
				diarrhoeal activity, anti
				hyperglycemic antihyperlipaemic
				Activity, wound healing and
				cytotoxic property were reported
				from different crude extracts and
				various isolated compounds from
				Butea monosperma.
6	Photochemical screening and	K Ramanujan 20	011	worked on ethanolic and aqueous
	in vitro anti helminthic activity	eyulu, V		extract from the stem bark Butea
	of Butea Monosperma (L) bark	preetam kumar,		monosperma was investigated for
	ethanolic activity and aqueous	M ranganath K		anti helminthic activity against
	extract	Nataraj ³⁸		pheretima posthuma. Various
				concentrations (20-60 mg/kg) of
				each extract were used in the
				bioassay which involved the
				parameter such as time of paralysis
				and time of death of worms.
7	Hepatoprotective and anti	R. Sathish, P. 20	011	examined stem bark of B.
	pyretic activities of methanolic	Sravan Kumar,		monosperma lam exhibits the
	extract of Butea monosperma	K. Natarajan, N.		hepatoprotective and antipyretic
	lam stem bark in wister rats	Sridhar ³⁹		property. The presence of
				flavonoids, glycoside, sterols, fixed
				oils, tannins were detected on
				Preliminary phytochemical
				screening of MEBM.
8	Evaluation of wound healing	Avula 20	011	Evaluated the wound healing
	properties of bioactive	Muralidhar, K.		activity of the ethanolic extract and
	fractions from the extract of	Sudhakar Babu,		the fractions isolated from the stem
	Butea monosperma (lam)	T. Ravi sankar,		bark of Butea monosperma were
	stems bark.	P. Reddanna, J.		evaluated in excision, incision and
		Latha ⁴⁰		dead space wound healing models

9

Antihyperglacemic and antioxidant effect of hydroethanolic extract of *Butea Monosprema* bark in diabetic mice

and Nidhi Sharma 2012 of and Veena Garg of 41 using Albino wistar rats. The healing activity wound was assessed by the breaking strength case of incision wounds, in epithelialization and wound contraction in case of excision wound and granulation tissue dry weight, breaking strength and hydroxyproline content in case of dead space wound

worked on different parameters such as total cholesterol, triglyceride, low density lipoprotein and very low density lipoprotein cholesterol were also found to be important, whereas the level of high density lipoprotein cholesterol was markedly reduced diabetic animal oxidative in damage in the tissue of diabetic mice was evidenced by a marked increase in the level of acid thiobarbituric reactive substance, distinct decrease in reduce glutathione contents and declined activity of antioxidant enzyme such

as superoxide dismutase, catalyses, and glutathione peroxides.

worked on antimicrobial activity of crude extracts of different parts of *Butea monosperama*. and the test microorganisms used included five

10	Antibacterial activity of crude	Mian Shahzada 2012	W
	extracts of different parts of	Zia Ahmad &	cr
	Butea monosperma (Lamk.)	Zaheer-Ud-Din	B
	Taub.	Khan ⁴²	m

bacterial species, two Grampositive (*Staphlococcus aureus* and *Bacillus subtilis*) and three Gramnegative (*Pseudomonas aeruginosa*, *Bacillus subtilis* and *Escherichia coli*). The bacteria were cultured on the nutrient agar medium. The well plate method was used for the determination of zone of inhibition.

examined preliminary phytochemical analysis depicts that B. monosperma bark has the presence of steroids and tannins and absence of terpenoids, alkaloids glycosides. and flavonoids. The moisture content and total ash values of bark was 3.0% and 9.7% respectively. The treatment with bark aqueous of B extract monosperma substantially declined the plasma glucose level in both IDDM and NIDDM animal subjects by 7.2% 26.6% respectively. This and treatment also appreciably (P= 0.05 and P=0.01) lowered the serum lipid profile.

2013 worked on wound healing activity was assessed by the breaking strength in case of incision wounds, epithelialization and wound contraction in case of

AJPER October – December 2016.	Vol 5, Issue 4 (9-28)

Sudhakar Babu,

P. Reddanna and

K.

isolated Muralidhar.

11

12

flavonoid

Anti diabetic effect of aqueous Sachdev Yadav, 2012 extract of *Butea monosperma* Neelam (LAM) Taub bark Chaturvedi,

Wound healing activity of Avula

Butea monosperma (Lam) in T. Ravi Sankar,

fraction

from the stem bark of

albino Wister rats

Neelam Chaturedi, Sheel Sharma, Rama Murthy and Kamal Nayan Dwivedi 28 J. Latha³⁵

excision wound and granulation tissue dry weight, breaking strength and hydroxyproline content in case dead The of space wound. flavonoid fraction showed the Significant wound healing activity on all three wound models. The phytochemical investigations revealed that the flavonoids fraction contains two isoflavones genistein and prunetine. The increased rate of wound and hydroxyproline contraction content in the flavonoid fraction treated animals provides а scientific ethno base to the medicinal of **Butea** use monosperma, which is largely attributable to the additive or synergistic effect of isoflavones present in the flavonoid fraction.

worked on different parameter such as morphology, anatomy and phytochemical of palash bark for its identification

prepared TLC for examination of fractions of benzene and benzene: ether (5:5) extract of the stem bark of *B. monosperma* revealed the separable mixture. These fractions were subjected to chromatography. Isolated compounds were purified and crystallized by chloroform:

13 Study on assessement of purity Kare M. A., 2013 Londhe D. K. standards of butea monosperma (lamk.) and Bhuktar A. S 43 taub, bark 14 Evaluation of Chemical Mustazi Jafri 2014

Constituents of *Monosperma* (Bark)

Butea and B.K. Mehta
44

methanol. After isolation and purification afforded white crystalline substance which was subjected to physical, chemical and spectral analysis and identified as Tetratriacont -15-ene(1), Hepta cos-11-ene(2),15-hydroxyl ethylheptadec-12-enoate(3),10hydroxy dodecyltridec-5 enoate(4), on the basis of spectral evidences. This study indicated the

anticonvulsant activity by erythrian variegate & Butea monosperama of bark & leaf PTZ and MES induced convulsions in Wister rats using erythrian variegate & Butea monosperama of bark & leaf ethanolic extracts. The anticonvulsant activity of this plant has not been studied in depth. In pentylene tetrazole an maximal electro shock seizure model test parameter like latency, onset of tonic convulsions, convulsion and percent protection were observed in the different test groups.

15 Anticonvulsant Effect of Leaf Prakash, 2015 and Bark of Erythrina T.Sangale, Variegata Linn Β. Dhananjay and Butea monosperma Deshmukh, (LAM) Taub in different Rajesh Bhambere ⁴⁵ Experimental Convulsion Model in Rats

Conclusion

The present review reveals that the plant *B. monosperma* is used in treating various diseases. The plant is used highly by the rural and tribal people in curing various disorders *Butea monosperma* has an effective natural origin that has a tremendous future for research. The present review also describe the use of the plant and an attempt was made to gather information about the qualitative analysis of phyto chemical and pharmacogical activity of the plant and its constituents.

Reference:

- 1. Rana F and Mazumder A. Review on Butea Monosperma. International journal of research in pharmacy and chemistry. 2012; 2(4): 2231-278.
- 2. Bandara BMR, Kumar NS and Wimalasiri KMS. J. Ethanopharmacol. 1989; 25:73.
- Gunankkunru A, Padmanaban K, Thirumal P, Pritila J, Parimala G, Vengtesan N, Gunasekhar N, Perianayagam JB, Sharma SK, Pillai KK, et al. J. Ethanopharmacol. 2005; 98:241-244.
- 4. Patil DA, Shubhangi Pawar and Patil MV. Ethnobotany of *Butea monosperma* (Lam.) in North Maharashtra, India. Natural Product Radiance. 2006; 5(4):323-325.
- 5. Raj RK and Kurup PA. Anthelmintic activity, toxicity and other pharmacological properties of palasonin, the active principle of Butea frondosa seeds and its piperazine salt. Indian J Med Res. 1968; 56(12):1818-25.
- Bandara BMR, Kumar NS, Wimalasiri KMS. J. Natl. Sci.Comu (Sri Lanka). 1990; 18:97.
- 7. Kirtikar KR and Basu BD Indian medicinal plants, Allahabad, India. 1935; I, 2nd edition, 785-788.
- Kala C. Prioritization of medicinal plants on the basis of available knowledge, existing practices and use value status in Uttaranchal, India. Biodivers. and Conserv. 2004; 13: 459.
- Gawale NS, Pal C and Kasture VS. Effect of Buteamonosperma on memory and behaviour mediated via monoamine neurotransmitters in laboratory animals. J. Nat. Remedies. 2000; 1(1):33-41.
- Shah KG, Bakxi AJ, Sukla VJ, Dave KK, De S and Ravishankar B. Phytochemical studies and antiestrogenic activity of Butea frondosa (Butea monosperma) flowers. Ind. J. Pharm Sci. 1990; 52: 272-275.
- Bavarva JH and Narasimhacharya AVRL. Preliminary study on antihyperglycemic and antihyperlipaemic effects of Butea monosperma in NIDDM rats, Fitoterapia. 2008; 79(5): 328-331.
- Mengi SA and Deshpande S.G. Anti-inflammatory activity of Butea frondosa leaves. Fitoterapia. 1999; 70(5-1): 521-522.
- Bodakhe SH and Ahuja M. In-vitro lens protective and antimicrobial activity of Butea frondosa. J. Pharm. Pharmacol. 2004 ;(S-63): 171.
- 14. Suguna L, Miriyala S and Panchatcharam M. Efficacy of Butea monosperma on dermal wound healing in rats. Int. J. Biochem. cell. Biol. 2005; 37(3): 566-573.
 AJPER October December 2016, Vol 5, Issue 4 (9-28)

- Agarwal AK, Singh M, Gupta N, Saxena R, Puri A and Verma AK .Management of giadiasis by an immunomodulatory herbal drug Pippali rasayana. J Ethnopharmacol. 1994; 44(3): 143-146.
- 16. Mehta BK and Bokadia MM. Chemistry & Industry (London, U. K.). 1981; 98.
- 17. Kasture VS, Kasture, SB and Chopra CT. Pharmacology, Biochemistry and Behavior 2002; 72: 965-972.
- Razdan MK, Kapila K and Bhide NK. Indian Journal Physiology Pharmacology. 1970; 14: 57-60.
- Maurya R, Yadav DK, Singh G, Bhargavan B, Murthy PSN, Sahai M and Singh MM, Osteogenic activity of constituents from Butea monosperma, Bioorganic & Medicinal Chemistry Letters. 2009; 19(3): 610-613.
- 20. Somani R, Kasture S and Singhai A. Antidiabetic potential of Butea monosperma in Rats, Fitoterapia. 2006; 77: 86-90.
- 21. Ramana DB, Singh S, Solanki KR and Negi AS. Animal Feed Science and Technology. 2000; 88:103-111.
- 22. Gunakkunru A, Padmanaban K, Thirumal P, Pritila J, Parimala G, Vengatesan N, Gnanasekar N, Perianayagam J, Sharma SK and Pillai KK. Antidiarrhoel activity of Butea monosperma in experimental animals, J of Ethnopharmacology. 2005; 98: 241-244.
- 23. Mishra M, Yogendra S and Kumar S. Euphane triterpenoid and lipid constituents from *Butea monosperma*, Phytochemistry. 2000;54: 835-838.
- 24. Gupta SR, Ravindranath B and Seshadri TR. Phytochemistry. 1970; 2231-2235.
- 25. Kirtikar KR and Basu BD. Indian medicinal plants, Edn 2, Vol-I, Lalit mohan Basu Allahabad,India, 1935; 785-788.
- 26. Tandon SP, Tiwari KP, Saxena VK. Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences. 1969; 39: 237-239.
- 27. Guha, P.K. Pot, R. and Bhattacharyya, A, An imide from the pod of *Butea monosperma*. Phytochemistry. 1990; 29(6):2017.
- Yadav S, Chaturvedi N, Sharma S, Murthy R and Dwivedi KN. Antidiabetic effect of aqueous extract of *butea monosperma* (LAM) Taub bark. Elixir Food Science. 2012; 42A: 6562-6567.
- 29. Nadkarni KM. Indian Materia Medica. 2002; 1:223-225.
- 30. Shukla YN, Mishra M, Kumar S. Indian Journal of Chemistry. 2002; 41 B: 1283-1285.

- Murti P, Bhaskara R and Krishnaswamy H. Proceedings Indian Academy of Sciences, Section A 12A, 1940; 472-476.
- 32. Rastogi RP and Mehrotra BN. Compendium of Indian Medicinal Plants, (CDRI, Lucknow and Publication and information Directorate, New Delhi. 1979; II: 115
- 33. William CM and Mohan KG. Anti-inflammatory and Analgesic Activity Of Butea Monosperma (Lam) Stem Bark In Experimental Animals. Pharmacology online. 2007; 2: 88-94.
- 34. Patil P, Prakash T, Shivakumar H and Pal S. Anti-Ulcer and Anti-Secretary Properties of the *Butea monosperma* (Lam) Bark Extract with Relation to antioxidant Studies. IJPT. 2009; 8: 1-6.
- 35. Muralidhar A, Sudhakar Babu K, Ravi Sankar T, Reddanna P and Latha J. Evaluation of wound healing properties of bioactive fractions from the extract of *Butea monosperma* (lam) stems bark. International Journal of Phytomedicine. 2011; 3:41-49.
- 36. Tiwari P, Kumar K, Panik R, Pandey A, Pandey A and Sahu PK. Hepatoprotective potentials of *Butea monosperma* stem bark extract against carbon tetrachloride induced hepatotoxicity in albino rats. International Journal of Medicine and Medical Sciences. 2011; 3(8):252-255.
- 37. Pal P and Bose S. Phytopharmacological Review of *Butea* and Phytochemical *monosperma*. 2011; 2 (3).
- 38. Ramanujan Eyulu K, Preetam Kumar V, Ranganath M and Nataraj K. Photochemical screening and in vitro anti helmenthik activity of *Butea Monosperma* (L) bark etanolic activity and aqueous extract. IJRAP. 2011; 2 (6): 1786-1787.
- 39. R. Sathish, P. Sravan Kumar, K. Natarajan, N. Sridhar. Hepatoprotective and Anti Pyretic Activities of Methanolic Extract of *Butea monosperma* Lam Stem Bark In Wister Rats. Asian J. Pharm. Res. 2011; 1(4): 130-133.
- 40. Muralidhar A, Sudhakar Babu K, Ravi Sankar T, Reddanna P and Latha J. Wound healing activity of flavonoid fraction isolated from the stem bark of *Butea monosperma* (Lam) in albino wistar rats. European Journal of Experimental Biology. 2013; 3(6):1-6.
- 41. Sharma N and Garg V. Antihyperglacemic and antioxidant effect of hydroethanolic extract of *Butea Monosprema* bark in diabetic mice. Indian J. Biochem & Biophys. 2012;49:55-62.
- 42. Zia Ahmad TMS & Khan Z. Antibacterial Activity of Crude Extracts of Different Parts of *Butea Monosperma* (Lamk.) Biological. 2012; 58 (1&2): 167-173.

- 43. Kare MA, Londhe DK and Bhuktar AS. Study On Assessement Of Purity Standards Of *Butea Monosperma* (Lamk.) Taub. Bark. 2013; 2 (4): 2319–5037.
- 44. Sangale PT, Deshmukh DB and Bhambere R. Anticonvulsant Effect of Leaf and Bark of Erythrina Variegata Linn Variegata Linn and *Butea monosperma* (LAM) Taub in different Experimental Convulsion Model in Rats, magazine.pharmatutor.org. 2015; 3(5):19-23.