

Asian Journal of Pharmaceutical Education and Research

Vol -5, Issue-4, October-December 2016

SJIF Impact Factor 4.101

ISSN: 2278-7496

REVIEW ARTICLE

A SHORT REVIEW ON PHARMACOLOGICAL ACTIVITY OF EQUISETUM RAMOSISSIMUM

Abhilasha jain*, Deepika Jain, Dr. Savita Shrivastava

Dept. of Chemistry, Govt. M. L. B. Girls College, Bhopal (M.P.)

Article Received on 22/08/2016

Revised on 17/09/2016

Accepted on 19/09/2016

*Correspondence for Author

Abhilasha Jain

Dept. of

Chemistry, Govt. M.L.B.

Girls College, Bhopal, (M.P.)

Email: aajain1012@gmail.com

ABSTRACT:

Equisetum ramosissimum species is considered a medicinal plant used to treat various diseases. The present review reveals that the plant *Equisetum ramosissimum* is used in treating various diseases. The plant is used highly by the rural and tribal people in curing various disorders. *Equisetum ramosissimum* has an effective natural origin that has a tremendous future for research. The present review also describe the use of the plant and an attempt was made to gather information about the qualitative analysis of phytochemical and pharmacogical activity of the plant and its constituents.

Keywords: Equisetum ramosissimum, pharmacogical activity

INTRODUCTION:

The stems of the plant *Equisetum ramosissimum* D.(*Equisetaceae*) commonly known in Spain as "cola de caballo" are extensively used in traditional medicine, in the Canary Islands, for the treatment of renal lithiasis, healing fractures and osteoporosis, as well as for the diuretic properties. *Equisetum* (horsetail, snake grass, puzzlegrass) is the only living genus in *Equisetaceae*, a family of vascular plants that reproduce by spores rather than seeds.¹

Figure 1: Whole plant of Equisetum ramosissimum

Classification of Equisetum ramosissimum

Kingdom- Plantae

Subkingdom - Tracheobionta

Division- Equisetophyta

Class- Equisetopsida

Order- Equisetales

Family- Equisetaceae

Family Genus- Equisetum L.

Species - Equisetum ramosissimum Desf.

Botany

Putod is a perennial herb, with jointed and branched rootstock. Roots are in whorls from the nodes. Stem is hollow and noding, the length of the internodes 2 to 6 centimeters with longitudinal striations at the surface. Leaves are obsolete, reduced to scales around the node. Cones (strobili) are oblong, green-yellow in color depending on maturity, terminal or spirally

AJPER October – December 2016, Vol 5, Issue 4 (1-8)

borne on the tip of the stem. The species differs from Equisetum debile in that the fertile stems are much branched, and are grooved and rough.²

Distribution

probably widely distributed throughout the Philippines at medium, to high altitudes (about 1,000 to 6,000 ft above sea level). Usually found along exposed stream embankments on sandy to stony soil. Easily overlooked because it blends with grassy landscape. Easily grown in ordinary garden soil.

Parts utilized:

Stem.

Properties

Sweet and slightly bitter tasting. Cleanses the liver and clears the eyesight. Diuretic and astringent.

Uses

- 1. Hypertension, reddening and swelling pain in the eye, pterygium of the cornea.
- 2. Used for diarrhea, jaunditic hepatitis, and renal lithiasis.
- 3. Dosage: 15 to 30 gms of dried material in decoction.
- 4. In China, decoction of whole plant used from wounds and ulcers. Also, used as antitussive and diuretic.
- 5. In India, used as cooling medicine for gonorrhea.

Studies

Antioxidant:

Study on scavenger activities of three equisetum species, including E ramosissimum, showed E telmatela to have the most scavenger and antioxidant activity.³

Diuretic / Toxicity / CNS Depressive Activity: An ethanol extract administered to Swiss albino mice showed moderate level of toxicity and central nervous depressive properties. The ethanol extract also exhibited an interesting diuretic activity in male Sprague-Daley rats when administered orally and intraperitoneally.

Other reported Activity

S. No.	Торіс	Author	Year	Work done
1	Biofunctional activities of	Pin-Hui Li,Yu-	2016	Examined biofunctional activities of
	Equisetum ramosissimum	Pin Chiu, Chieh-		Equisetum ramosissimum Extract:
	extract: protective effects	Chih Shih, Zhi-		protective effects against oxidation,
	against oxidation, melanoma,	Hong Wen, Laura		Melanoma, and Melanogenesis. Oxidative
	and melanogenesis. Oxidative	Kaodichi Ibeto,		medicine and cellular longevity.
	medicine and cellular longevity	Shu-Hung Huang,		Experiments indicated that the
		Chien Chih Chiu,		biofunctional activities of ethyl acetate
		Dik-Lung Ma,		extract contained in food and cosmetics
		Chung-Hang		protect against oxidation, melanoma, and
		Leung, Yaw-Nan		melanin production.
		Chang, and Hui-		
		Min DavidWang 4		
2	Antioxidative and	Cetojevic-Simin	2013	Investigated antioxidative and
	antiproliferative activities of	DD,Canadanovic-		antiproliferative activity of different
	different horsetail (Equisetum	Brunet JM,		horsetail (Equisetum arvense L.) extracts.
	arvense L.) extracts	Bogdanovic GM,		The results indicate that n-butanol,
		Djilas SM,		methanol, ethyl acetate, and water extracts
		Cetkovic GS,		had significant peroxyl radical scavenging
		Tumbas VT, and		activity. Extracts inhibited cell growth
		Stojiljkovic BT ⁵		that was dependent on cell line, type of
				extract, and extract concentration. Ethyl
				acetate extract exhibited the most
				prominent ant proliferative effect, without
				inducing any cell growth stimulation on
				human tumor cell lines.
3	Scientific evidences for clinical	Carneiro Dm,	2013	The results showed of preclinical
	use carneiro Dm. Equisetum	Tresvenzol Lmf,		pharmacological studies demonstrate
	Arvense: scientific evidences	Jardim Pcbv, and		several important in vitro and in vivo
	for clinical.	Cunha Lc. ⁶		biological activities, including
				antioxidant, sedative, antimicrobial,

AJPER October – December 2016, Vol 5alsquatel(1,-8) cytotoxic, vasorelaxant,

				hepatoprotective, ant diabetic, analgesic,
				anti-inflammatory, wound-healing,
				rematerializing, antilithiasic and diuretic
				activities. No clinical studies supporting
				the use of horsetail as a diuretic or studies
				on the mechanism of action of horsetail
				extracts were identified.
4	Review: hepatoprotective and	Maria Suciu,	2012	Reviewed on the potentials of a few
	microbiological studies of three	Aurel Ardelean ⁷		miracle plants that have the ability to
	genera: Equisetum,			reduce or cure liver damage. Equisetum,
	Lycopodium, and Gentiana.			Lycopodium and Gentiana genera species
				are well known homeopathic plants in the
				Northern Hemisphere. Their properties are
				used in many disorders, and in the recent
				studies they are tested for their
				microbiological and hepatic curative
				actions.
5	Evaluation of antioxidant	Amit Semwal,	2013	Worked on antioxidant activity of
	activity of some pteridophytes.	Mamta S		Diplazium esculentum was the strongest,
		Farswan,		followed in descending order by Adiantum
		Kamalesh Upreti,		lunulatum, Pteris vittata, Equisetum
		SP Bhatt, Kumud		ramosissimum Desf. and Ampelopteris
		Upadhyaya ⁸		prolifera (Retz.). All the methanolic
				extracts exhibited antioxidant activity
				significantly. The IC_{50} of the methanolic
				extracts ranged between 0.32 \pm 0.12 and
				0.81 ± 0.21 mg/ml.
6	Evaluation of in vitro	Paulsamy S.	2013	Reported that the antioxidant activities of
	antioxidant potential of	Moorthy, D.		methanolic extracts of Actiniopteris
	methanolic extracts of the	Nandakumar K.		radiata and Equisetum ramosissimum.
	Ferns, actiniopteris radiata	Saradha M. ⁹		Actiniopteris radiata and Equisetum
	(SW) link. and equisetum			ramosissimum were found to have potent
	ramosissimum desf			antioxidant activity against DPPH with

				the I_{C50} value of 93.48 and 78.58
				respectively. Actiniopteris radiata had the
				highest values for ABTS++ radical
				scavenging activity (2523.11 μ TE/g) and
				reducing power assay (0.853 absorbance
				at 700µg/ml). However, the fern,
				Equisetum ramosissimum exhibited higher
				ferrous iron chelating activity (41.18% at
				5000µg/ml) than Actiniopteris radiata.
7	Exploring Equisetum arvense	Dubravka Stajner, 2	2009	Worked on the antioxidant and
	L., Equisetum ramosissimum L.	Bories M.		scavenging activities of above ground
	and Equisetum telmateia L. as	popavic, Jasna		parts of Equisetum arvense L., Equisetum
	sources of natural antioxidants	Candanovic		ramosissimum L. and Equisetum telmateia
		Brunet, Goran		L. phosphate buffer (pH 7) extracts were
		Anackov. ¹⁰		investigated. The total antioxidant
				capacity was determined by ferric
				reducing antioxidant power assay. The
				Equisetum telmateia extract demonstrated
				scavenging and antioxidant properties
				better than Equisetum ramosissimum and
				Equisetum arvense.
8		Bimala Subba, 2	2014	Prepared ethanolic extracts of various
	Antimicrobial Activity of Some	Prakash Basnet ¹¹		plants such as Cissus repens, Hedyotis
	Medicinal Plants from East and			scandens, Jatropha curcas, Morus alba,
	Central Part of Nepal			Inula cappa, Equisetum ramosissimum,
				Osyris wightiana, Alternantheria sessilis
				and Hibiscus lampas investigated
				individually for antimicrobial activity.
				These were investigated against selected
				species of Staphylococcus aureus,
				Escherichia coli, Proteus vulgaris and
				Klebsiella pneumoniae to find the
				inhibitory activities of the microbes.

9		Li Y, Liu D. ¹²	2006	Concluded that high concentration Cu
	Physiological metabolism and			disturbed the physiological metabolism,
	protective enzyme activity of			and critically threatened the normal
	Equisetum ramosissimum under			growth of E. ramosissimum. The activities
	Cu stress.			of protective enzyme, especially of SOD
				and POD, were enhanced with increasing
				Cu concentration, and had a positive
				correlation with Cu concentration (rPOD
				= 0.978, rSOD = 0.926, P < 0.05).
10.		Najwa	1992	Conclude that the antifungal activity
	Antifungal activity of some	Mohammed Jameel Ali Abu- Mejdad ¹³		alcoholic extracts of six plants and contain
	plant extracts against two yeasts			more active compounds allowing
	isolates in vitro.			Recommended therapeutic alternatives to
				antifungal chemical drugs.

Conclusion

The present review reveals that the plant *Equisetum ramosissimum* is used in treating various diseases. The plant is used highly by the rural and tribal people in curing various disorders. *Equisetum ramosissimum* has an effective natural origin that has a tremendous future for research. The present also describe the use of the plant and an attempt was made to gather information about the qualitative analysis of phytochemical and pharmacological activity of the plant and its constituents.

Reference

- 1. Hauke RL. Equisetum ramosissimum in North America. Amer. Fern J. 1979; 69:1-5.
- Leroux O, Knox JP, Masschaele B, Bagniewska-Zadworna A, Marcus SE, Claeys M, van Hoorebeke L, Viane RL. An extensin-rich matrix lines the carinal canals in *Equisetum ramosissimum*, which may function as water-conducting channels. Annals of Botany. 2011; 108:307–319.
- 3. Blois MS. Antioxidants determination by the use of a stable free radical. Nature. 1958; 26: 1199-1200.
- Pin-Hui Li, Yu-Pin Chiu, Chieh-Chih Shih, Zhi-Hong Wen, Laura Kaodichi Ibeto, Shu-Hung Huang, Chien Chih Chiu, Dik-Lung Ma, Chung-Hang Leung, Yaw-Nan AJPER October – December 2016, Vol 5, Issue 4 (1-8)

Chang, and Hui-Min DavidWang. Biofunctional Activities of *Equisetum ramosissimum* Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis. Oxidative Medicine and Cellular Longevity. 2016; 1-9.

- Cetojevic-Simin DD, Canadanovic- Brunet JM, Bogdanovic GM, Djilas SM, Cetkovic GS, Tumbas VT, and Stojiljkovic BT. Antioxidative and antiproliferative activities of different horsetail (Equisetum arvense L.) extracts. J. Med. Food. 2010;13(2): 452-9.
- Carneiro Dm, Tresvenzol Lmf, Jardim Pcbv, and Cunha Lc. *Equisetum Arvense:* Scientific Evidences for Clinical Use Carneiro Dm. *Equisetum Arvense:* Scientific Evidences For Clinical Use. 2013; 2(8): 1579-1596.
- Maria Suciu, Aurel Ardelean. Review: Hepatoprotective and Microbiological Studies Of Three Genera: *Equisetum*, *Lycopodium*, And *Gentiana*. Tom. 2012; XIX (2):116-122.
- 8. Amit Semwal, Mamta S Farswan, Kamalesh Upreti, SP Bhatt, Kumud Upadhyaya. Evaluation of Antioxidant Activity of Some Pteridophytes. 2013; 1:1-5.
- Paulsamy S, Moorthy D, Nandakumar K, Saradha M. Evaluation of in vitro antioxidant potential of methanolic extracts of the Ferns, *actiniopteris radiata* (SW) link. and equisetum ramosissimum desf. International Journal of Research and Development in Pharmacy and Life Sciences.2013; 2(3): 451-455.
- Dubravka Stajner, Bories M. popavic, Jasna Candanovic Brunet, Goran Anackov. Exploring *Equisetum arvense* L., *Equisetum ramosissimum* L. and *Equisetum telmateia* L. as sources of natural antioxidants. 2009; 29: 546-550.
- 11. Bimala Subba, Prakash Basnet. Antimicrobial Activity of Some Medicinal Plants from East and Central Part of Nepal. Int J Appl Sci Biotechnol. 2014; 2(1): 88-92.
- 12. Li Y, Liu D. Physiological metabolism and protective enzyme activity of Equisetum ramosissimum under Cu stress. the Journal of Applied Ecology. 2006; 17(3):498-501.
- 13. Najwa Mohammed Jameel Ali Abu-Mejdad. Antifungal Activity of Some Plant Extracts Against Two Yeasts Isolates *In Vitro*. Research Journal of Pharmaceutical, Biological and Chemical Sciences.2014; 5(2): 1992-1998.